- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
LeVeque, Randall J (2)
-
Terada, Kenjiro (2)
-
Baraldi, Robert (1)
-
Fujita, Saneiki (1)
-
Liu, Christopher M (1)
-
Moriguchi, Shuji (1)
-
Nomura, Reika (1)
-
Otake, Yu (1)
-
Rim, Donsub (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this study, we propose a scenario superposition method for real‐time tsunami wave prediction. In the offline phase, prior to actual tsunami occurrence, hypothetical tsunami scenarios are created, and their wave data are decomposed into spatial modes and scenario‐specific coefficients by the singular value decomposition. Then, once an actual tsunami event is observed, the proposed method executes an online phase, which is a novel contribution of this study. Specifically, the predicted waveform is represented by a linear combination of training scenarios consisting of precomputed tsunami simulation results. To make such a prediction, a set of weight parameters that allow for appropriate scenario superposition is identified by the Bayesian update process. At the same time, the probability distribution of the weight parameters is obtained as reference information regarding the reliability of the prediction. Then, the waveforms are predicted by superposition with the estimated weight parameters multiplied by the waveforms of the corresponding scenarios. To validate the performance and benefits of the proposed method, a series of synthetic experiments are performed for the Shikoku coastal region of Japan with the subduction zone of the Nankai Trough. All tsunami data are derived from numerical simulations and divided into a training data set used as scenario superposition components and a test data set for an unknown real event. The predicted waveforms at the synthetic gauges closest to the Shikoku Islands are compared to those obtained using our previous prediction method incorporating sequential Bayesian updating.more » « less
-
Rim, Donsub; Baraldi, Robert; Liu, Christopher M; LeVeque, Randall J; Terada, Kenjiro (, Geophysical Research Letters)We investigate the potential of using Global Navigation Satellite System (GNSS) observations to directly forecast full tsunami waveforms in real time. We train convolutional neural networks to use less than 9 min of GNSS data to forecast the full tsunami waveforms over 6 hr at select locations, and obtain accurate forecasts on a test data set. Our training and test data consists of synthetic earthquakes and associated GNSS data generated for the Cascadia Subduction Zone using the MudPy software, and corresponding tsunami waveforms in Puget Sound computed using GeoClaw. We use the same suite of synthetic earthquakes and waveforms as in earlier work where tsunami waveforms were used for forecasting, and provide a comparison. We also explore varying the number of GNSS stations, their locations, and their observation durations.more » « less
An official website of the United States government
